A Geometric Approach to Multi-Criterion Reinforcement Learning

نویسندگان

  • Shie Mannor
  • Nahum Shimkin
چکیده

We consider the problem of reinforcement learning in a controlled Markov environment with multiple objective functions of the long-term average reward type. The environment is initially unknown, and furthermore may be affected by the actions of other agents, actions that are observed but cannot be predicted beforehand. We capture this situation using a stochastic game model, where the learning agent is facing an adversary whose policy is arbitrary and unknown, and where the reward function is vector-valued. State recurrence conditions are imposed throughout. In our basic problem formulation, a desired target set is specified in the vector reward space, and the objective of the learning agent is to approach the target set, in the sense that the long-term average reward vector will belong to this set. We devise appropriate learning algorithms, that essentially use multiple reinforcement learning algorithms for the standard scalar reward problem, which are combined using the geometric insight from the theory of approachability for vector-valued stochastic games. We then address the more general and optimization-related problem, where a nested class of possible target sets is prescribed, and the goal of the learning agent is to approach the smallest possible target set (which will generally depend on the unknown system parameters). A particular case which falls into this framework is that of stochastic games with average reward constraints, and further specialization provides a reinforcement learning algorithm for constrained Markov decision processes. Some basic examples are provided to illustrate these results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Area/Low-Power CMOS Op-Amps Design Based on Total Optimality Index Using Reinforcement Learning Approach

This paper presents the application of reinforcement learning in automatic analog IC design. In this work, the Multi-Objective approach by Learning Automata is evaluated for accommodating required functionalities and performance specifications considering optimal minimizing of MOSFETs area and power consumption for two famous CMOS op-amps. The results show the ability of the proposed method to ...

متن کامل

Multi-Objective Learning Automata for Design and Optimization a Two-Stage CMOS Operational Amplifier

In this paper, we propose an efficient approach to design optimization of analog circuits that is based on the reinforcement learning method. In this work, Multi-Objective Learning Automata (MOLA) is used to design a two-stage CMOS operational amplifier (op-amp) in 0.25μm technology. The aim is optimizing power consumption and area so as to achieve minimum Total Optimality Index (TOI), as a new...

متن کامل

Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach

Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...

متن کامل

Anytime Self-play Learning to Satisfy Functional Optimality Criteria

We present an anytime multiagent learning approach to satisfy any given optimality criterion in repeated game self-play. Our approach is opposed to classical learning approaches for repeated games: namely, learning of equilibrium, Pareto-efficient learning, and their variants. The comparison is given from a practical (or engineering) standpoint, i.e., from a point of view of a multiagent system...

متن کامل

Multi-Objective Service Composition Using Reinforcement Learning

Web services have the potential to offer the enterprises with the ability to compose internal and external business services in order to accomplish complex processes. Service composition then becomes an increasingly challenging issue when complex and critical applications are built upon services with different QoS criteria. However, most of the existing QoS-aware compositions are simply based o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2004